Share page |

TEACHING OF NUMERATION 335
From this arrangement, one sees at once which are the numbers which can be divided by two — all those which have not an odd cube at the bottom. These are the
even numbers, because they can be arranged in pairs, two by two; and the division by two is easy, all that is necessary being to separate the two lines of twos that stand one under the other. Counting the cubes of each file we have the quotient. To recompose the primitive number we need only reassemble the two files thus 2X3 = 6. All this is not difficult for children of five years.The repetition soon becomes monotonous, but the exercises may be most easily changed, taking again the set of long rods, and instead of placing rod number one after nine, place it after ten. In the same way, place two after nine, and three after eight. In this way we make rods of a greater length than ten; lengths which we must learn to name eleven, twelve, thirteen, etc., as far as twenty. The little cubes, too, may be used to
fix these higher numbers.Having learned the operations through ten, we proceed with no difficulty to twenty. The one difficulty lies in the
decimal numbers which require certain lessons.lessons on decimals: arithmetical calculations
beyond ten
The necessary didactic material consists of a number of square cards upon which the figure ten is printed in large type, and of other rectangular cards, half the size of the square, and containing the single numbers from one to nine. We place the numbers in a line; 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Then, having no more numbers, we must begin over again and take the 1 again. This 1 is like that section in the set of rods which, in rod number 10, extends |
||